Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569263

RESUMO

The present study aimed to assess the efficiency of zeolite in mitigating the nitrogen (N) losses through ammonia (NH3) and nitrous oxide (N2O) emissions from pig slurry (PS) applied to Italian ryegrass (IRG)-maize fields under a crop rotation system and the consequent effect on nitrogen use efficiency (NUE) for forage production. PS was applied at rates of 150 and 200 kg N ha-1 for the IRG and maize growing seasons, respectively, with or without zeolite. Soil mineral N content and NH3 and N2O emissions were measured periodically throughout the year-round cultivation of IRG and maize. Forage yield and nutritional composition were also analyzed at the harvest time of each crop. The PS with/without zeolite application effects were interpreted by comparison with those obtained for the negative control (no-N fertilization). Soil ammonium (NH4+) content in the PS-applied plots sharply increased within the first week, then progressively decreased in both the IRG and maize growing seasons. Soil NH4+ contents in the zeolite-amended plots were higher compared to the treatment without zeolite except for the first 1 or 2 weeks after PS application when soil nitrate (NO3-) contents significantly decreased. The increase in soil NH4+ content as affected by zeolite application was more distinct in the maize growing season than in the IRG growing season. NH3 emission was predominant at the early 2 weeks after PS application. Zeolite application reduced the cumulative emission of NH3 from PS by 16.7% and 24.4% and that of N2O by 15.6% and 31.5% in the IRG growing and maize growing seasons, respectively. NUE for dry matter (DM) and total digestible nutrients (TDN) production significantly improved in annual yield basis of the IRG-maize cropping. Zeolite application in PS-applied field may represent effective management in mitigating N losses through odorous NH3 and greenhouse gas (N2O) emissions, thereby improving NUE forage production.


Assuntos
Lolium , Zeolitas , Animais , Suínos , Nitrogênio , Zea mays , Solo , Óxido Nitroso/análise , Fertilizantes , Produção Agrícola , Itália , Agricultura
2.
Physiol Plant ; 175(6): e14115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148216

RESUMO

Oilseed rape (Brassica napus L.) is a significant agro-economic crop with a wide range of uses. Drought is the most frequent unfavourable environmental stressor restraining its growth and development worldwide. This study was conducted to characterize the drought-responsive phenylpropanoid pathway and its link to hormonal changes in two cultivars, drought-resistant "Saturnin" and drought-susceptible "Mosa." Drought susceptibility in cv. Mosa was confirmed by its lower water use efficiency and higher lipid peroxidation levels with reactive oxygen species (ROS) accumulation. In cv. Saturnin, higher salicylic acid (SA) levels and expression of dehydration-responsive element binding 2 (DREB2) and non-expressor of pathogenesis-related gene 1 (NPR1) led to an upregulation of production of anthocyanin pigment 1 (PAP1) and phenylpropanoid pathway-related gene (CHS, F5H and COMT1) expression, increasing hydroxycinnamic acid and flavonoid compound concentrations. However, in cv. Mosa, higher increases in the activity of lignifying enzymes (polyphenol oxidase, coniferyl alcohol peroxidase, syringaldazine peroxidase, guaiacol peroxidase) and expression of the lignin synthesis-related gene cinnamyl alcohol dehydrogenase 2 (CAD2) were found along with greater increases in abscisic acid (ABA) levels and upregulation of ABA-responsive element binding 2 (AREB2) and basic helix-loop-helix transcription factor MYC2. These results indicate that drought-induced SA-mediated activation of the hydroxycinnamic acid and flavonoid pathways contributes to drought resistance, whereas ABA-mediated lignification contributes to drought susceptibility.


Assuntos
Brassica napus , Resistência à Seca , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Cumáricos/metabolismo , Ácido Abscísico/metabolismo , Secas , Flavonoides/metabolismo
3.
Metabolites ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36557228

RESUMO

Drought intensity modifies the assimilatory pathway of glutathione (GSH) synthesis. Abscisic acid (ABA) is a representative signaling hormone involved in regulating plant stress responses. This study aimed to investigate an interactive regulation of sulfate and/or ABA in GSH metabolism and redox. The drought-responsive alterations in sulfate assimilation and GSH-based redox reactions were assessed relative to ABA responses on the time-course of drought intensity. Drought-responsive H2O2 concentrations were divided into two distinct phases-an initial 4 days of no change (Ψw ≥ -0.49 MPa) and a phase of higher accumulation during the late phase of the drought (days 10-14; Ψw ≤ -1.34 MPa). During the early phase of the drought, GSH/GSSG redox state turned to the slightly reduced state with a transient increase in GSH, resulting from a strong activation of H2O2 scavenging enzymes, ascorbate peroxidase (APOX) and glutathione reductase (GR). The late phase of the drought was characterized by a decrease in GSH due to cysteine accumulation, shifting GSH- and NADPH-based redox states to higher oxidization, increasing sulfate and ABA in xylem, and causing ABA accumulation in leaves. Regression analysis revealed that sulfate in xylem sap was positively correlated with H2O2 concentrations and ABA was closely related to decreases in the GSH pool and the oxidation of GSH catalyzed by glutathione peroxidase (GPOX). These results indicate that drought-induced oxidation proceeds through the suppression of GSH synthesis and further GSH oxidation in a sulfate-activated ABA-dependent manner.

4.
Antioxidants (Basel) ; 11(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421468

RESUMO

In plants, prolonged drought induces oxidative stress, leading to a loss of reducing potential in redox components. Abscisic acid (ABA) is a representative hormonal signal regulating stress responses. This study aimed to investigate the physiological significance of dimethylthiourea (DMTU, an H2O2 scavenger) in the hormonal regulation of the antioxidant system and redox control in rapeseed (Brassica napus L.) leaves under drought stress. Drought treatment for 10 days provoked oxidative stress, as evidenced by the increase in O2•- and H2O2 concentrations, and lipid peroxidation levels, and a decrease in leaf water potential. Drought-induced oxidative responses were significantly alleviated by DMTU treatment. The accumulation of O2•- and H2O2 in drought-treated plants coincided with the enhanced expression of the NADPH oxidase and Cu/Zn-SOD genes, leading to an up-regulation in oxidative signal-inducible 1 (OXI1) and mitogen-activated protein kinase 6 (MAPK6), with a concomitant increase in ABA levels and the up-regulation of ABA-related genes. DMTU treatment under drought largely suppressed the drought-responsive up-regulation of these genes by depressing ABA responses through an antagonistic interaction with salicylic acid (SA). DMTU treatment also alleviated the drought-induced loss of reducing potential in GSH- and NADPH-based redox by the enhanced expression of glutathione reductase 1 (GR1) and up-regulation of oxidoreductase genes (TRXh5 and GRXC9). These results indicate that DMTU effectively alleviates drought-induced oxidative responses by suppressing ABA-mediated oxidative burst signaling in an antagonistic regulation of SA.

6.
Antioxidants (Basel) ; 11(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35326216

RESUMO

Drought alters the level of endogenous reactive oxygen species (ROS) and hormonal status, which are both involved in the regulation of stress responses. To investigate the interplay between ROS and hormones in proline metabolism, rapeseed (Brassica napus L.) plants were exposed to drought or exogenous H2O2 (Exo-H2O2) treatment for 10 days. During the first 5 days, the enhanced H2O2 concentrations in drought treatment were associated with the activation of superoxide dismutase (SOD) and NADPH oxidase, with enhanced ABA and SA levels, while that in Exo-H2O2 treatment was mainly associated with SA-responsive POX. During the latter 5 days, ABA-dependent ROS accumulation was predominant with an upregulated oxidative signal-inducible gene (OXI1) and MAPK6, leading to the activation of ABA synthesis and the signaling genes (NCED3 and MYC2). During the first 5 days, the enhanced levels of P5C and proline were concomitant with SA-dependent NDR1-mediated signaling in both drought and Exo-H2O2 treatments. In the latter 5 days of drought treatment, a distinct enhancement in P5CR and ProDH expression led to higher proline accumulation compared to Exo-H2O2 treatment. These results indicate that SA-mediated P5C synthesis is highly activated under lower endogenous H2O2 levels, and ABA-mediated OXI1-dependent proline accumulation mainly occurs with an increasing ROS level, leading to ProDH activation as a hypersensitive response to ROS and proline overproduction under severe stress.

7.
Plants (Basel) ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685802

RESUMO

To investigate the regulatory role of ethylene in the source-sink relationship for nitrogen remobilization, short-term effects of treatment with different concentrations (0, 25, 50, and 75 ppm) of ethephon (2-chloroethylphosphonic acid, an ethylene inducing agent) for 10 days (EXP 1) and long-term effects at 20 days (Day 30) after treatment with 100 ppm for 10 days (EXP 2) on protein degradation and amino acid transport in foliar sprayed mature leaves of Brassica napus (cv. Mosa) were determined. In EXP 1, endogenous ethylene concentration gradually increased in response to the treated ethephon concentration, leading to the upregulation of senescence-associated gene 12 (SAG12) expression and downregulation of chlorophyll a/b-binding protein (CAB) expression. Further, the increase in ethylene concentration caused a reduction in protein, Rubisco, and amino acid contents in the mature leaves. However, the activity of protease and expression of amino acid transporter (AAP6), an amino acid transport gene, were not significantly affected or slightly suppressed between the treatments with 50 and 75 ppm. In EXP 2, the enhanced ethylene level reduced photosynthetic pigments, leading to an inhibition of flower development without any pod development. A significant increase in protease activity, confirmed using in-gel staining of protease, was also observed in the ethephon-treated mature leaves. Ethephon application enhanced the expression of four amino acid transporter genes (AAP1, AAP2, AAP4, and AAP6) and the phloem loading of amino acids. Significant correlations between ethylene level, induced by ethephon application, and the descriptive parameters of protein degradation and amino acid transport were revealed. These results indicated that an increase in ethylene upregulated nitrogen remobilization in the mature leaves (source), which was accompanied by an increase in proteolytic activity and amino acid transport, but had no benefit to pod (sink) development.

8.
Front Plant Sci ; 12: 700413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589095

RESUMO

The antioxidant glutathione (GSH) mitigates adverse physio-metabolic effects and defends against abiotic types of stress, such as cadmium (Cd) stress. However, its function and role in resisting Cd phytotoxicity by leveraging plant antioxidant-scavenging, redox-regulating, and hormone-balancing systems have not been comprehensively and systematically demonstrated in the Cd-hyperaccumulating plant Brassica napus L. cv. Tammi (oilseed rape). In this study, the effects of exogenously applied GSH to the leaves of B. napus seedlings exposed to Cd (10 µM) were investigated. As a result, Cd stress alone significantly inhibited growth and increased the levels of reactive oxygen species (ROS) and the bioaccumulation of Cd in the seedlings compared with those in unstressed controls. Furthermore, Cd stress induced an imbalance in plant stress hormone levels and decreases in endogenous GSH levels and GSH redox ratios, which were correlated with reductions in ascorbate (AsA) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox states. However, the exogenous application of GSH to Cd-stressed B. napus seedlings reduced Cd-induced ROS levels and enhanced antioxidant-scavenging defenses and redox regulation by both increasing seedling AsA, GSH, and NADPH concentrations and rebalancing stress hormones, thereby enhancing Cd uptake and accumulation. These results demonstrate that GSH improved plant redox status by upregulating the AsA-GSH-NADPH cycle and reestablishing normal hormonal balance. This indicates that exogenously applied GSH can mitigate Cd phytotoxicity in B. napus and possibly other plants. Therefore, GSH can potentially be applied to Cd-polluted soil for plant remediation.

9.
Plants (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34451716

RESUMO

The leaf senescence process is characterized by the degradation of macromolecules in mature leaves and the remobilization of degradation products via phloem transport. The phytohormone ethylene mediates leaf senescence. This study aimed to investigate the ethephon-induced ethylene effects on starch degradation and sucrose remobilization through their interactive regulation with other hormones. Ethephon (2-chloroethylphosphonic acid) was used as an ethylene-generating agent. Endogenous hormonal status, carbohydrate compounds, starch degradation-related gene expression, sucrose transporter gene expression, and phloem sucrose loading were compared between the ethephon-treated plants and controls. Foliar ethephon spray enhanced the endogenous ethylene concentration and accelerated leaf senescence, as evidenced by reduced chlorophyll content and enhanced expression of the senescence-related gene SAG12. Ethephon-enhanced ethylene prominently enhanced the endogenous abscisic acid (ABA) level. accompanied with upregulation of ABA synthesis gene 9-cis-epoxycarotenoid dioxygenase (NCED3), ABA receptor gene pyrabactin resistance 1 (PYR1), and ABA signaling genes sucrose non-fermenting 1 (Snf1)-related protein kinase 2 (SnRK2), ABA-responsive element binding 2 (AREB2), and basic-helix-loop-helix (bHLH) transcription factor (MYC2).) Ethephon treatment decreased starch content by enhancing expression of the starch degradation-related genes α-amylase 3 (AMY3) and ß-amylase 1 (BAM1), resulting in an increase in sucrose content in phloem exudates with enhanced expression of sucrose transporters, SUT1, SUT4, and SWEET11. These results suggest that a synergistic interaction between ethylene and ABA might account for sucrose accumulation, mainly due to starch degradation in mature leaves and sucrose phloem loading in the ethephon-induced senescent leaves.

10.
Anim Biosci ; 34(12): 2023-2033, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33902171

RESUMO

OBJECTIVE: The present study was conducted to assess the effect of urease inhibitor (hydroquinone [HQ]) and nitrification inhibitor (dicyandiamide [DCD]) on nitrogen (N) use efficiency of pig slurry for perennial ryegrass regrowth yield and its environmental impacts. METHODS: A micro-plot experiment was conducted using pig slurry-urea 15N treated with HQ and/or DCD and applied at a rate of 200 kg N/ha. The flows of N derived from the pig slurry urea to herbage regrowth and soils as well as soil N mineralization were estimated by tracing pig slurry-urea 15N, and the N losses via ammonia (NH3), nitrous oxide (N2O) emission, and nitrate (NO3-) leaching were quantified for a 56 d regrowth of perennial ryegrass (Lolium perenne) sward. RESULTS: Herbage dry matter at the final regrowth at 56 d was significantly higher in the HQ and/or DCD applied plots, with a 24.5% to 42.2% increase in 15N recovery by herbage compared with the control. Significant increases in soil 15N recovery were also observed in the plots applied with the inhibitors, accompanied by the increased N content converted to soil inorganic N (NH4+ +NO3-) (17.3% to 28.8% higher than that of the control). The estimated loss, which was not accounted for in the herbage-soil system, was lower in the plots applied with the inhibitors (25.6% on average) than that of control (38.0%). Positive effects of urease and/or nitrification inhibitors on reducing N losses to the environment were observed at the final regrowth (56 d), at which cumulative NH3 emission was reduced by 26.8% (on average 3 inhibitor treatments), N2O emission by 50.2% and NO3- leaching by 10.6% compared to those of the control. CONCLUSION: The proper application of urease and nitrification inhibitors would be an efficient strategy to improve the N use efficiency of pig slurry while mitigating hazardous environmental impacts.

11.
Plants (Basel) ; 10(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806958

RESUMO

The aim of this study was to characterize hormonal crosstalk with the sugar signaling and metabolic pathway based on a time course analysis of drought intensity. Drought intensity-responsive changes in the assimilation of newly fixed carbon (C) into soluble sugar, the content of sugar and starch, and expression of genes involved in carbohydrate metabolism were interpreted as being linked to endogenous abscisic acid (ABA) and salicylic acid (SA) levels and their signaling genes. The ABA and SA levels in the drought-stressed leaves increased together during the early drought period (days 0-6), and additional ABA accumulation occurred with depressed SA during the late period (days 6-14). Although drought treatment decreased the assimilation of newly fixed C into soluble sugar, representing a 59.9%, 33.1%, and 62.9% reduction in 13C-glucose, 13C-fructose, and 13C-sucrose on day 14, respectively, the drought-responsive accumulation of soluble sugars was significant. During the early period, the drought-responsive accumulation of hexose and sucrose was concurrent with the upregulated expression of hexokinase 1 (HXK1), which, in turn, occurred parallel to the upregulation of ABA synthesis gene 9-sis-epoxycarotenoid dioxygenase (NCED3) and SA-related genes (isochorismate synthase 1 (ICS1) and non-expressor of pathogenesis-related gene (NPR1)). During the late period, hexose accumulation, sucrose phloem loading, and starch degradation were dominant, with a highly enhanced expression of the starch degradation-related genes ß-amylase 1 (BAM1) and α-amylase 3 (AMY3), which were concomitant with the parallel enhancement of sucrose non-fermenting-1 (Snf1)-related protein kinase 2 (SnRK2).2 and ABA-responsive element binding 2 (AREB2) expression in an ABA-dependent manner. These results indicate that the drought-responsive accumulation of sugars (especially SA-mediated sucrose accumulation) is part of the acclamatory process during the early period. Conversely, ABA-responsive hexose accumulation and sucrose phloem loading represent severe drought symptoms during the late drought period.

12.
Microorganisms ; 9(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513868

RESUMO

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the main disease of cruciferous vegetables. To characterize the resistance mechanism in the Brassica napus-Xcc pathosystem, Xcc-responsive proteins in susceptible (cv. Mosa) and resistant (cv. Capitol) cultivars were investigated using gel-free quantitative proteomics and analysis of gene expression. This allowed us to identify 158 and 163 differentially expressed proteins following Xcc infection in cv. Mosa and cv. Capitol, respectively, and to classify them into five major categories including antioxidative systems, proteolysis, photosynthesis, redox, and innate immunity. All proteins involved in protein degradation such as the protease complex, proteasome subunits, and ATP-dependent Clp protease proteolytic subunits, were upregulated only in cv. Mosa, in which higher hydrogen peroxide accumulation concurred with upregulated superoxide dismutase. In cv. Capitol, photosystem II (PS II)-related proteins were downregulated (excepting PS II 22 kDa), whereas the PS I proteins, ATP synthase, and ferredoxin-NADP+ reductase, were upregulated. For redox-related proteins, upregulation of thioredoxin, 2-cys peroxiredoxin, and glutathione S-transferase occurred in cv. Capitol, consistent with higher NADH-, ascorbate-, and glutathione-based reducing potential, whereas the proteins involved in the C2 oxidative cycle and glycolysis were highly activated in cv. Mosa. Most innate immunity-related proteins, including zinc finger domain (ZFD)-containing protein, glycine-rich RNA-binding protein (GRP) and mitochondrial outer membrane porin, were highly enhanced in cv. Capitol, concomitant with enhanced expression of ZFD and GRP genes. Distinguishable differences in the protein profile between the two cultivars deserves higher importance for breeding programs and understanding of disease resistance in the B. napus-Xcc pathosystem.

13.
Front Plant Sci ; 12: 738608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082802

RESUMO

To characterize cultivar variations in hormonal regulation of the transition between pattern-triggered immunity (PTI) and effector-triggered immunity or susceptibility (ETI or ETS), the responses of resistance (R-) genes, hydrogen peroxide, and proline metabolism in two Brassica napus cultivars to contrasting disease susceptibility (resistant cv. Capitol vs. susceptible cv. Mosa) were interpreted as being linked to those of endogenous hormonal levels and signaling genes based on a time course of disease symptom development. Disease symptoms caused by the Xanthomonas campestris pv. campestris (Xcc) infections were much more developed in cv. Mosa than in cv. Capitol, as shown by an earlier appearance (at 3 days postinoculation [3 DPI]) and larger V-shaped necrosis lesions (at 9-15 DPI) in cv. Mosa. The cultivar variations in the R-genes, hormone status, and proline metabolism were found in two different phases (early [0-3 DPI] and later [9-15 DPI]). In the early phase, Xcc significantly upregulated PTI-related cytoplasmic kinase (Botrytis-induced kinase-1 [BIK1]) expression (+6.3-fold) with salicylic acid (SA) accumulation in cv. Capitol, while relatively less (+2.6-fold) with highly increased jasmonic acid (JA) level in cv. Mosa. The Xcc-responsive proline accumulation in both cultivars was similar to upregulated expression of proline synthesis-related genes (P5CS2 and P5CR). During the later phase in cv. Capitol, Xcc-responsive upregulation of ZAR1 (a coiled-coil-nucleotide binding site-leucine-rich repeat [CC-NB-LRR-type R-gene]) was concomitant with a gradual increase in JA levels without additional proline accumulation. However, in cv. Mosa, upregulation of TAO1 (a toll/interleukin-1 receptor-nucleotide binding site-leucine-rich repeat [TIR-NB-LRR-type R-gene]) was consistent with an increase in SA and abscisic acid (ABA) levels and resulted in an antagonistic depression of JA, which led to a proline accumulation. These results indicate that Xcc-induced BIK1- and ZAR1-mediated JA signaling interactions provide resistance and confirm ETI, whereas BIK1- and TAO1-enhanced SA- and/or ABA-mediated proline accumulation is associated with disease susceptibility (ETS).

14.
Front Plant Sci ; 11: 586547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329648

RESUMO

The role of ascorbate (AsA) in antioxidant defense system-associated resistance to cadmium (Cd) in oilseed rape plants has not yet been clearly demonstrated. The present study investigated the critical role of exogenous AsA on the physiological and biochemical responses of reactive oxygen species (ROS) and antioxidant scavenging defense systems in oilseed rape (Brassica napus L. cv. Tammi) seedlings exposed to Cd. Cd (10 µM) treatment led to significant reductions in plant growth; increases in the levels of superoxide anion radical, hydrogen peroxide, and malondialdehyde; and increases in Cd uptake and accumulation by the roots and shoots in hydroponically grown 10-day-old seedlings. Moreover, it reduced AsA content and AsA redox ratios, which have been correlated with reductions in glutathione (GSH) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox status. However, exogenously applying AsA to Cd-exposed seedlings decreased Cd-induced ROS, improved antioxidant defense systems by increasing AsA, GSH, and NADPH contents, and increased Cd uptake and accumulation in both roots and shoots of the plants. These results provided evidence that the enhancement in AsA redox status can be linked to an increase in the GSH and/or NADPH redox ratios through the induction of the AsA-GSH-NADPH cycle. Thus, these results suggest that exogenous AsA application to oilseed rape seedlings under Cd stress might alleviate the overall Cd toxicity by regulating the homeostasis of the AsA-GSH-NADPH cycle, which reestablishes the steady-state cellular redox status.

15.
Plants (Basel) ; 9(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316109

RESUMO

Proline metabolism influences the metabolic and/or signaling pathway in regulating plant stress responses. This study aimed to characterize the physiological significance of glutamate (Glu)-mediated proline metabolism in the drought stress responses, focusing on the hormonal regulatory pathway. The responses of cytosolic Ca2+ signaling, proline metabolism, and redox components to the exogenous application of Glu in well-watered or drought-stressed plants were interpreted in relation to endogenous hormone status and their signaling genes. Drought-enhanced level of abscisic acid (ABA) was concomitant with the accumulation of ROS and proline, as well as loss of reducing potential, which was assessed by measuring NAD(P)H/NAD(P)+ and GSH/GSSG ratios. Glu application to drought-stressed plants increased both salicylic acid (SA) and cytosolic Ca2+ levels, with the highest expression of calcium-dependent protein kinase (CPK5) and salicylic acid synthesis-related ICS1. The SA-enhanced CPK5 expression was closely associated with further enhancement of proline synthesis-related genes (P5CS1, P5CS2, and P5CR) expression and a reset of reducing potential with enhanced expression of redox regulating genes (TRXh5 and GRXC9) in a SA-mediated NPR1- and/or PR1-dependent manner. These results clearly indicate that Glu-activated interplay between SA- and CPK5-signaling as well as Glu-enhanced proline synthesis are crucial in the amelioration of drought stress in Brassica napus.

16.
Plants (Basel) ; 9(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121557

RESUMO

To characterize cultivar variation in resistance gene (R-gene)-mediated calcium signaling and hormonal regulation in effector-triggered immunity (ETI) and disease susceptibility, Xanthomonas campestris pv. campestris (Xcc) was inoculated in two Brassica napus cultivars (cvs. Capitol and Mosa). At 14 days post inoculation (DPI) with Xcc, there was a necrotic lesion in cv. Mosa along with the significant accumulation of H2O2 and malondialdehyde (MDA), whereas no visual symptom was observed in cv. Capitol. The cultivar variations in the R-gene expressions were found in response to Xcc. ZAR1 is a coiled-coil-nucleotide binding site-leucine-rich repeat (CC-NB-LRR)-type R-gene that is significantly induced in cv. Capitol, whereas toll/interleukin-1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NB-LRR)-type R-gene, TAO1, is significantly upregulated in cv. Mosa Xcc-inoculated plants. The defense-related gene's non-race-specific disease resistance 1 (NDR1) and mitogen-activated protein kinase 6 (MAPK6) were enhanced, whereas calcium-dependent protein kinase (CDPK5) and calcium-sensing protein 60g (CBP60g) were depressed in cv. Capitol Xcc inoculated plants, and opposite results were found in cv. Mosa. The calcium-sensing receptor (CAS), calmodulin (CaM), expression was induced in both the cultivars. However, the CAS induction rate was much higher in cv. Mosa than in cv. Capitol in response to Xcc. The phytohormone salicylic acid (SA) and jasmonic acid (JA) levels were significantly higher in cv. Capitol along with the enhanced SA receptors (NPR3 and NPR4) and JA synthesis and signaling-related gene expression (LOX2, PDF1.2), whereas the JA level was significantly lower in cv. Mosa Xcc inoculated plants. The SA synthesis and signaling-related genes (ICS1, NPR1) and SA were present at higher levels in cv. Mosa; additionally, the SA level present was much higher in the susceptible cultivar (cv. Mosa) than in the resistant cultivar (cv. Capitol) in response to Xcc. These results indicate that ZAR1 mediated the coordinated action of SA and JA synthesis and signaling to confirm ETI, whereas TAO1 enhanced the synthesis of SA through CAS and CBP60g to antagonize JA synthesis and signaling to cause disease susceptibility in the Brassica napus-Xcc pathosystem.

17.
Front Plant Sci ; 10: 1089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572411

RESUMO

Glutathione (GSH) plays diverse roles in the physiological processes, stress defense, growth, and development of plants. This study investigated the effects of exogenous GSH on the biochemical responses of reactive oxygen species and antioxidant levels in rice (Oryza sativa L. cv. Dasan) seedlings under arsenic (As) stress. As treatment inhibited growth; increased the level of superoxide, hydrogen peroxide, and malondialdehyde; and enhanced the uptake of As by the roots and shoots in hydroponically grown 14-day-old seedlings. Furthermore, it reduced GSH content and GSH redox ratios, which have been correlated with the decrease in ascorbate (AsA) redox state. Whereas the exogenous application of GSH in As-treated seedlings reduced As-induced oxidative stress, improved antioxidant defense systems by maintaining antioxidant and/or redox enzyme homeostasis, and increased the AsA and GSH contents, the GSH application also increased the As translocation from the roots to the shoots. These results indicated that the increase in GSH redox state can be linked to an increase in the AsA redox ratio via the induction of the AsA-GSH cycle. Therefore, the results suggest that exogenous GSH application should be a promising approach to enhance As stress resistance in rice plants.

18.
Plant Sci ; 285: 132-140, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203877

RESUMO

Xanthomonas campestris pv. campestris (Xcc)- responsive soluble and cell wall-bound hydroxycinnamic acids (HAs) and flavonoids accumulation in relation to hormonal changes in two Brassica napus cultivars contrasting disease susceptibility were interpreted with regard to the disease resistance. At 14-day post inoculation with Xcc, disease resistance in cv. Capitol was distinguished by an accumulation of specific (HAs) and flavonoids particularly in cell-wall bound form, and was characterized by higher endogenous jasmonic acid (JA) resulting in a decrease of JA-based balance with other hormones, as well as enhanced expression of JA signaling that was concurrently based on upregulation of PAP1 (production of anthocyanin pigment 1), MYB transcription factor, and phenylpropanoid biosynthetic genes. Fourier transform infrared spectra confirmed higher amounts of esterified phenolic acids in cv. Capitol. These results indicate that enhanced JA levels and signaling in resistant cultivar was associated with a higher accumulation of HAs and flavonoids, particularly in the cell wall-bound form, and vice versa in the susceptible cultivar (cv. Mosa) with enhanced SA-, ABA-, and CK- levels and signaling. Thus the JA-mediated phenolic metabolites accumulation is an important feature for the management and breeding program to develop disease-resistant B. napus cultivar.


Assuntos
Brassica napus/imunologia , Parede Celular/metabolismo , Ácidos Cumáricos/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença , Oxilipinas/metabolismo , Fenóis/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Xanthomonas campestris , Brassica napus/metabolismo , Brassica napus/microbiologia , Brassica napus/fisiologia , Parede Celular/fisiologia , Resistência à Doença/fisiologia , Suscetibilidade a Doenças/microbiologia , Suscetibilidade a Doenças/fisiopatologia , Flavonoides/metabolismo , Peroxidação de Lipídeos , Microscopia Eletrônica de Varredura , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
19.
Front Plant Sci ; 10: 46, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778361

RESUMO

Oilseed rape (Brassica napus L.) is an oleoproteaginous crop characterized by low N use efficiency (NUE) that is mainly related to a weak Nitrogen Remobilization Efficiency (NRE) during the sequential leaf senescence of the vegetative stages. Based on the hypothesis that proteolysis efficiency is crucial for the improvement of leafNRE, our objective was to characterize key senescence-associated proteolytic mechanisms of two genotypes (Ténor and Samouraï) previously identified with contrasting NREs. To reach this goal, biochemical changes, protease activities and phytohormone patterns were studied in mature leaves undergoing senescence in two genotypes with contrasting NRE cultivated in a greenhouse under limiting or ample nitrate supply. The genotype with the higher NRE (Ténor) possessed enhanced senescence processes in response to nitrate limitation, and this led to greater degradation of soluble proteins compared to the other genotype (Samouraï). This efficient proteolysis is associated with (i) an increase in serine and cysteine protease (CP) activities and (ii) the appearance of new CP activities (RD21-like, SAG12-like, RD19-like, cathepsin-B, XBCP3-like and aleurain-like proteases) during senescence induced by N limitation. Compared to Samouraï, Ténor has a higher hormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes senescence, particularly under low N conditions, and this is correlated with the stronger protein degradation and serine/CP activities observed during senescence. Short statement: The improvement in N recycling during leaf senescence in a genotype of Brassica napus L. characterized by a high nitrogen remobilization efficiency is related to a high phytohormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes leaf senescence and is correlated with an increase or the induction of specific serine and cysteine protease activities.

20.
Plant Physiol Biochem ; 125: 172-177, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29455090

RESUMO

To characterize the p-coumaric acid (pCA)-induced phenolic metabolites in relation to the disease resistance against Xanthomonas campestris pv. campestris (Xcc.), the responses of soluble- and cell wall-bound flavonoid and hydroxycinnamic acids compounds to the pretreatment of pCA or the inhibitor of the 4-coumarate-CoA ligase, 3,4-(methylenedioxy) cinnamic acid (MDCA), following Xcc inoculation were assessed, and the resulting data were interpreted with regard to susceptibility to Xcc in Chinese cabbage (Brassica rapa var. pekinensis). At 12 days post-inoculation (DPI) with Xcc, disease symptom development could be distinguished by necrotic lesions, and characterized by an enhanced lipid peroxidation. Overall, pCA acts as a positive stimulus for an accumulation of hydroxycinnamic acids and flavonoids, while MDCA acts as a negative regulator. Pretreatment with pCA resulted in an accumulation of specific hydroxycinnamic acids, pCA, ferulic acid (FA), and sinapic acid (SiA) in both soluble and cell wall-bound forms in Xcc-inoculated leaves, while MDCA pretreatment decreased accumulation in a dose-dependent manner. Two flavonoid compounds, epigallocatechin (EGC) and epigallocatechin gallate (EGCG), showed a similar response to pCA and MDCA pretreatments. These results indicate that a lower disease symptom development in pCA-pretreated leaves was associated with a higher accumulation of hydroxycinnamic acids and flavonoids, and vice-versa in MDCA- and non-pretreated (control) leaves.


Assuntos
Brassica rapa , Parede Celular/imunologia , Resistência à Doença/efeitos dos fármacos , Fenóis/metabolismo , Doenças das Plantas/microbiologia , Propionatos/farmacologia , Xanthomonas campestris , Brassica rapa/metabolismo , Brassica rapa/microbiologia , Ácidos Cumáricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...